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The solidification history of individual thermal spray particles has been the subject of many experimental
and theoretical studies. Yet it is customary to assume that solidification occurs at the equilibrium tem-
perature, and that heat propagates according to Fourier’s Law. To account for a finite thermal diffusion
speed, a hyperbolic heat conduction equation is usually adopted to analyze heat transfer. However, under
certain circumstances, this equation can violate the second law of thermodynamics, and so others have
modified the original hyperbolic equation via theories of extended irreversible thermodynamics. In this
work, we study non-equilibrium effects of rapid solidification of a pure metal particle, and compare the
so-called parabolic, hyperbolic and modified hyperbolic equations for heat transfer, to predict the inter-
face undercooling due to thermal effects and velocity as a function of time, for different relaxation times.
Results indicate that differences are limited to the early part of the solidification process, when underco-
oling is most significant, the interface velocity is highest, and non-equilibrium effects are most evident.
As solidification progresses, the non-equilibrium effects wane and solidification can then be properly
modeled as an equilibrium process.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal sprayed coatings are built up from an agglomeration of
splats formed by the impact, spread, and solidification of individual
molten particles. The solidification history of an individual splat at
the deposition zone is a process that, to a large extent, determines
the final phase structure of a coating. For example, Fig. 1 illustrates
Ni splats deposited onto a stainless steel substrate. Note the varia-
tion of microstructure across the splat that we are unable to ex-
plain, but that we suspect is related to the relative rates of
solidification of Ni at the center and periphery of the splat.

It is well understood that rapid solidification affects the forma-
tion of the micro and macro characteristics of a splat, including
grain size, grain density, and even splat shape [1,2]. Yet phase
change models that assume the solidification front is in local ther-
mal equilibrium continue to be applied to the study of splat solid-
ification (e.g., [3]).

To investigate the effect of undercooling and non-equilibrium
crystal growth kinetics in rapid solidification, Wang [4] developed
a 1D interface tracking model. By assuming that solidification be-
gins when the interface temperature between the splat and sub-
strate reaches the nucleation temperature (below the equilibrium
melting temperature), the interface velocity is then linearly related
to the local undercooling via a crystal growth kinetics relationship
that is an extra constraint on the governing equations.
ll rights reserved.

: +1 416 978 7753.
ghimi).
Yet even Wang’s model of rapid solidification is a simplification,
in that it assumes an infinite speed of heat conduction, commonly
referred to as parabolic heat conduction. The alternative, so-called
hyperbolic models, include a relaxation parameter that is related to
a finite speed of heat conduction, that presumably leads to further
deviations from equilibrium behavior. Mathematically, the hyper-
bolic models are fundamentally different than the traditional par-
abolic model; in this paper, we seek to quantify the differences
between these models for the case of pure material phase change.
The questions we seek to answer include: What factors contribute
to non-equilibrium behavior during rapid solidification? What
equations reflect such phenomena? Do non-equilibrium behaviors
as described by the hyperbolic and parabolic models change the
solutions significantly?

It has been noted that non-equilibrium behaviors during rapid
solidification are related to many factors, including the intense
heat flux as a splat attaches to a substrate, the corresponding large
latent heat release, and the most cited factor, the high interface
velocity [5]. To answer the second question, it is well known that
the conventional parabolic heat conduction equation (PE) assumes
an infinite thermal diffusion speed, via Fourier’s Law. But when the
velocity of the solidification front is comparable to the actual
(finite) diffusion speed, such as can occur in rapid solidification,
an alternative heat conduction equation ought to be applied. Catta-
neo [6] first devised such an equation, to replace Fourier’s Law, that
in turn yields a so-called conventional hyperbolic heat conduction
equation (CHE). But this CHE was later shown (in some extreme
circumstances) to yield a negative entropy-production rate per
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Nomenclature

B,E,F,H,S arrays
b splat thickness [m]
C heat wave propagation velocity [m s�1]
c specific heat capacity [J kg�1 K�1]
D mass diffusivity [m2 s�1]
D0 self-diffusivity [m2 s�1]
e internal energy [J mol�1 K2]
h heat transfer coefficient [W m�2 K�1]
L latent heat of solidification [J kg�1]
p mesh density factor
~q heat flux [W m�2]
Q dimensionless heat flux
r radius [m]
R gas constant [J mol�1 K]
s entropy [J mol�1 K]
T temperature [K]
Tm equilibrium melting temperature [K]
Tn nucleation temperature [K]
u local energy per unit mass [J mol�1 K2]
us speed of sound in the melt [ms�1]
VD mass diffusion velocity [ms�1]
Vi interface velocity [ms�1]

Greek symbols:
a thermal diffusivity [m2 s�1]

b dimensionless Boltzmann constant
Dg dimensionless mesh size
DG total Gibbs free energy [J mol�1]
DGam activation energy for molecular migration [J mol�1]
DHM heat of fusion [J mol�1]
DS entropy of crystallization [J mol�1 K]
DTi interface undercooling [K]
e interface location [m]
g dimensionless coordinate
h dimensionless temperature
j thermal conductivity [W m�1 K�1]
lk linear kinetics coefficient [ms�1 K�1]
q density [k g�3]
r entropy production rate [J mol�1 kg m�3]
s relaxation time [s]

Subscripts and Superscripts:
i interface
j solid or liquid phase
L liquid
S solid
n time level
* dimensionless
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unit volume [7], by predicting heat conduction from cold to hot,
and temperatures below absolute zero. Based on theories of irre-
versible thermodynamics, modified hyperbolic heat conduction
equations (MHE) have been developed to remedy the defects [8].

In the thermal spray process, the solidification front moves
rapidly with time, and hence, this is a Stefan problem. A linear
relationship between undercooling and interface velocity (often
referred to as the dynamic interface condition) is an extra con-
straint that is often applied [4]. Solutions to the three equations
Fig. 1. Micrograph of a Ni splat on stainless steel.
(PE, CHE and MHE) plus the dynamic interface condition, when
applied to rapid solidification, have not been compared, nor have
solutions been presented that predict interface velocity for
hyperbolic models. Analytical solutions are generally unavailable
when the interface velocity is linearly related to undercooling,
and thus the equations must be solved numerically. Mullis [9]
proposed the hyperbolic equivalent of directional solidification
to solve the energy equation utilizing a moving coordinate sys-
tem, but simplified the CHE by assuming a quasi-steady front
moving at constant velocity as solidification progressed. Sobolev
[10] and Galenko [11] applied the CHE to a concentration field to
simulate rapid solidification of a binary alloy using a stable mov-
ing coordinate system. Yet in reality, the interface velocity varies
dramatically at the onset of rapid solidification, and in this work,
we solve for that variation.

In order to solve these equations numerically, the interface
tracking method of Wang [4] that was used to solve the PE [1]
has been applied to solve the hyperbolic ones. MacCormack’s pre-
dictor-corrector method is applied to solve the different equations
[5]. At the solidification front, in order to track the interface veloc-
ity, the traditional energy balance conditions are incompatible
with the hyperbolic equations, and so energy conservation condi-
tions are derived based on the hyperbolic equations, the dynamic
interface condition, and a heat flux balance at the interface.

Building on Wang’s model [4], we present numerical solutions
of the PE, CHE and MHE models applied to the rapid solidification
of a pure metal. The effect of varying the relaxation time is inves-
tigated, as this is deemed by some (e.g. [Galenko]) to be a critical
term especially at the onset of rapid solidification. The results of
parabolic and hyperbolic solidification are compared, and serve
to clarify whether finite-rate heat conduction effects need to be
considered when modeling the rapid solidification of pure metal
systems.

The physical description of the problem is as follows: a molten
particle impacts a cold substrate, which initiates a strong heat flux
at the interface. For a characteristic thermal spray particle of



H. Liu et al. / International Journal of Heat and Mass Transfer 52 (2009) 1177–1184 1179
50 lm diameter impacting at 100 m/s, the fluid spread time
(�3 ls) will be at least an order of magnitude less than the charac-
teristic solidification time; hence we neglect convective effects in
our solidification model. Solidification begins when crystal nuclei
reach a critical size. The directional solidification process is de-
scribed by the PE, CHE, and MHE governing equations, together
with compatible boundary conditions at the solid/liquid interface.

2. Physical model and method formulation

In order to solve for non-equilibrium phase change of a pure
metal rapidly solidifying on a substrate, we have developed a 1D
model similar to that of Wang [4], based on the following assump-
tions and idealizations:

1. the droplet forms a thin layer of pure metal, with uniform initial
temperature;

2. the droplet and substrate are in perfect contact along a stable
planar interface;

3. the interface velocity is linearly related to the undercooling;
4. the heat transfer coefficient at the droplet/substrate interface

is assumed to be a constant, inferred from experimental
measurements;

5. the heat transfer coefficient at the upper surface of the droplet
is much smaller than at the droplet/substrate interface; we
assume it to be zero;

6. thermal diffusion coefficients are spatially uniform in the liquid
and solid, but not equal.

2.1. Mathematical description

When a molten particle impacts a surface, the interface temper-
ature drops to the melting temperature and heterogeneous nucle-
ation begins. In order to form a crystal nucleus which is stable and
will continue to grow, the activation energy must be overcome
[12]:

dðDGÞ
dr

¼ 0 ð1Þ

where DG is the free energy barrier at the interface and r is the ra-
dius of a spherical crystal. During nucleation, the interface temper-
ature drops until the nucleus reaches a critical size and columnar
solidification begins. The temperature at this moment can be re-
garded as the initial undercooling temperature. Since the substrate
material, and surface properties such as substrate cleanliness and
smoothness, will affect the critical nucleus size, these interface con-
ditions can be represented by introducing a kinetic coefficient lk

and an undercooling. Details of this approach will be introduced
in the next section.

The basis of hyperbolic models of heat conduction is the so-
called generalized Fourier’s law

~qþ s o q!

ot
¼ �jjrTj ð2Þ

where the index j = L or j = S refers to the liquid and solid phases,
respectively. Where the usual Fourier’s Law implies that a heat flux
~q is proportional to the instantaneous thermal gradient, Eq. (2) im-
plies that the heat flux also depends on the history of the solidifica-
tion process [13], as it assumes that a heat wave propagates with
finite velocity. The relaxation time s can be thought of as the
phase-lag between the temperature gradient and the commence-
ment of heat flow in a medium [14].

When Eq. (2) is introduced into an expression for conservation
of energy
qcj
oTj

ot
þr �~q ¼ 0 ð3Þ

one obtains the wave-based CHE

oTj

ot
þ s o2Tj

o2t
¼ ajr2Tj ð4Þ

which includes an extra term [5] when compared to the classical PE

oTj

ot
¼ ajr2Tj ð5Þ

If s = 0, Eq. (4) reverts to Eq. (5), and then the heat wave prop-
agates with infinite speed, which implies that the influence of a
temperature change on one side of a domain propagates instanta-
neously to the other side. This is physically unrealistic, although in
most cases, the relaxation time is so small that the classical PE
suffices.

To assess the thermodynamic validity of different models, Bar-
letta and Zanchini [16] derived the following expression for an en-
tropy production rate

r ¼ r �
~q
T

� �
þ q

os
ot

ð6Þ

and showed that the CHE is inconsistent with the second law of
thermodynamics. Specifically, for constant density q, the local en-
ergy per unit mass can be expressed as de = Tds. Combining Eqs.
(3) and (6) leads to the following expression for entropy production
rate

r ¼ � 1
T2
~q � rT ð7Þ

Then combining Eqs. (2) and (7) yields a general form of entropy
production that includes the heat flux delay

r ¼ 1
jT2

~q �~qþ s~q � o
~q

ot

� �
ð8Þ

The first term on the right hand side of Eq. (8) shows that local
entropy is related to the heat flux entering a system, which is al-
ways positive; the second term, on the other hand, can be negative
if there is a steep decrease in heat flux. As a result, the sum of the
two terms can yield a negative local entropy production rate, and
so violate the second law of thermodynamics. Of course, for s = 0,
the entropy production rate for the PE is always positive.

To remedy this defect, Coleman et al. [17] suggested that inter-
nal energy e and entropy must satisfy the following relationships,
to keep entropy positive

oe
oT
¼ T

os
oT

ð9Þ

oe
oq
¼ T

os
oq
þ sq

jT
ð10Þ

Incorporating these equations into Eq. (2) yields a modified first
law of thermodynamics [17]

~r �~qþ qc þ q2 da
dT

� �
oT
ot
þ 2aq

oq
ot
¼ 0 ð11Þ

with

a ¼ � T2

2
d

dT
s

jT2

� �
ð12Þ

We refer to the system of equations (2) and (10) as the modified
hyperbolic heat conduction equations (MHE). By introducing the
following dimensionless quantities

Q ¼ aq
cjT0

; h ¼ T
T0
; t� ¼ c2t

2a
; x� ¼ cx

2a
ð13Þ
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the MHE become

oQ
ot�
þ oh

ox�
¼ �2Q ð14Þ

o

ot�
½hþ Q2

h
� þ oQ

ox�
¼ 0 ð15Þ

Similarly, the nondimensional CHE are

oQ
ot�
þ oh

ox�
¼ �2Q ð16Þ

oh
ot�
þ oQ

ox�
¼ 0 ð17Þ

and the PE are:

oh
ox�
¼ �2Q ð18Þ

oh
ot�
þ oQ

ox�
¼ 0 ð19Þ

Combining Eqs. (18) and (19) yields a nondimensional form of
Eq. (4)

o2h

ot�2 þ 2
oh
ot�
¼ o2h

ox�2 ð20Þ

The relaxation time s for a metallic system is usually estimated to
be on the order of 10�10 to 10�12 s [13], a value that can been deter-
mined in different ways. For example, s can be defined as s = aC�2

[9]; as thermal conductivity is related to phonon oscillation, Baumei-
ster and Hamill [15] estimated C to be on the order of 1000 ms�1 for
metallic systems, and to be related to the velocity of sound in the
liquid [9], thus yielding a s on the order of 10�11 or less. On the other
hand, even for pure metals, Kurz and Fisher [12] point out that ‘‘the
transformation of one phase into another requires rearrangement of
atoms, this may involve a relatively short-range (atomic) rearrange-
ment to form a crystal structure.” This leads us to suggest that s could
also be defined as s ¼ DV�2

D . From this expression, s based on mass
diffusion would be on the order of 10�10 and hence larger than that
associated with thermal diffusion. The above estimates of s, related
to either phonon oscillation or atom rearrangement, are what we
concern ourselves with. In this paper, we consider this range of relax-
ation times, in order to assess the extent to which the non-equilib-
rium term impacts solidification.

In order to solve a Stefan problem, a dynamic interface condi-
tion is required, which is usually specified as a linear relationship
between undercooling and solidification front velocity [12], de-
rived from theories of crystal growth or collision-limited growth.
Considering heterogeneous nucleation without a nucleation bar-
rier, the interface velocity associated with crystal growth can be
defined as [18–22]

V i ¼ b
D0

d
e
�DGam

kTi 1� e�
DHMDTi

kTiTm

� �
ð21Þ

where b ¼ d
k

� �2 mi
mL

� 	
is a factor introduced by Cahn et al. [18,19]. Col-

lision-limited growth theory yields a different equation for interface
velocity [4,24,25]

V i ¼ use�DSR�1
1� e�

DG
RTi

h i
ð22Þ

Note, however, that either of Eqs. (21), (22) can be simplified
into a linear kinetic relationship related to undercooling

V i ¼ lkðTm � T iÞ ¼ lkDT i ð23Þ

by assuming that deviations of the interface temperature from the
equilibrium melting temperature are small [23]. Thus, for example,

the linearized form of Eq. (21) implies that lk represents b D0
d

� � DHM

kT2
m

� 	
[22]. Eq. (22) reduces to Eq. (23) in a similar way.
The dynamic interface condition (Eq. (23)) at the solid/liquid
interface is an extra constraint condition on the PE, CHE and
MHE; the energy conservation condition is used to verify the inter-
face velocity and ensures that the interface velocity is applied
properly, to maintain the heat flux balance at the interface; this
condition leads to [26]

qSL
de
dt
¼ q� � qþ ð24Þ

where e is interface location, and q- and q+ represent the heat flux on
the liquid and solid sides of the melt front, respectively. Differenti-
ating q- with respect to time, we obtain

dq�

dt
¼ q�x

de
dt
þ q�t ð25Þ

where the interface velocity is V i ¼ � de
dt. Differentiating Eq. (23)

yields

T�t þ
de
dt

T�x ¼ �
1
lk

d2e
dt2 ð26Þ

To obtain a similar interface condition for the CHE, we incorpo-
rate Eqs. (25) and (26) into Eqs. (2) and (3), and assuming that the
liquid and solid have the same density, obtain the following flux
balances for the liquid and solid sides of the interface

1
qsL

dq�

dt
þ 1

s
q�

� �
¼ cL

L
T�x

de
dt

� �2

� aL

s

" #
þ cL

Ll
de
dt

d2e
dt2 ð27Þ

1
qsL

dqþ

dt
þ 1

s
qþ

� �
¼ cs

L
Tþx

de
dt

� �2

� as

s

" #
þ cs

Ll
de
dt

d2e
dt2 ð28Þ

Differentiating Eq. (24) with respect to time, and incorporating
this into Eqs. (27) and (28) yields

cs�cL

Ll
de
dt

d2e
dt2 þ

d2e
dt2 þ

1
s

de
dt
¼ cL

L
T�x

de
dt

� �2

�aL

s

" #
�cs

L
Tþx

de
dt

� �2

�as

s

" #

ð29Þ

This is the interface energy conservation condition for the CHE;
if s = 0, this equation reduces to

de
dt
¼ cL

L
T�x ½aL� �

cs

L
Tþx ½as� ð30Þ

which is the corresponding equation for the PE.
Similar to how Eq. (29) was derived, the interface energy con-

servation condition for the MHE is given by

cs�cL

Ll
de
dt

d2e
dt2 þ

d2e
dt2 þ

1
s

de
dt
¼ cL

L
T�x

de
dt

� �2

�aL

s

" #
�cs

L
Tþx

de
dt

� �2

�as

s

" #

þ s
jsqLT2

i

de
dt

q� �qL
de
dt

� �2 de
dt

Tþx þ
1
l

d2e
dt2

 !

� s
jLqLT2

i

de
dt

q�ð Þ2 de
dt

T�x þ
1
l

d2e
dt2

 !

� 2
jsqLT i

de
dt

q� �qL
de
dt

� �
q� �qL

de
dt
þjsTþx

� �

� 2
jLqLT i

de
dt

q�ð Þ q� þjLT�x
� �

ð31Þ

The above energy conservation conditions, Eqs. (29)–(31), serve
as interface conditions when solving the CHE, PE and MHE,
respectively.

Finally, we need to specify initial and boundary conditions. The
initial conditions are:

Tðx; 0Þ ¼ T0; q ¼ 0 ð32Þ
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Fig. 2. Schematic of the geometry and coordinate system used in the numerical
simulations [14].

Table 1
Physical properties of Al used in the calculations [30]

Parameter Units Value

Tm K 933.6
DL m2 s�1 5 � 10�9

jL W m�1 K�1 105
js W m�1 K�1 210
cL J kg�1 K�1 1080
cS J kg�1 K�1 1180
qL kg m�3 2390
qS kg m�3 2550
L J kg�1 397000
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and the boundary condition at the upper surface b of the splat is:

oTðb; tÞ
ox

¼ 0 ð33Þ

The focus of this work is on the very early stage of solidification,
when non-equilibrium effects are strongest. As a result, we ignore
the heat stored in the solidified material, because the thickness of
this region is very small, and so we assume that the solidified region
only conducts heat. This allows us to treat the solidified region via a
simple boundary condition, that we present in the next section.

2.2. Numerical solution and iteration scheme

A common solution strategy can be applied to the three systems
of equations (PE, CHE and MHE), and so in what follows we only
present the numerical methodology for the CHE.

Rather than solve Eq. (4) numerically, we solve Eqs. (2) and (3),
which are two first-order partial differential equations.

We fix the moving solid/liquid interface by transforming the
physical coordinate to a computational one (see Fig. 2)

g ¼ x
e

� 	p
ð34Þ

p adjusts the mesh density in the liquid region [28]; this non-uni-
form transformation is necessary to solve the system efficiently.
The governing equations in the computational coordinate
ð0 6 g 6 1Þ are then the following

qc
oT
ot
� qcp

de
dt

oT
og
þ pgð

p�1
p Þ

1
e

oq
og
¼ 0 ð35Þ

s oq
ot
� sp

g
e

de
dt

oq
og
þ qþ pgð

p�1
p Þ

j
e

oT
og
¼ 0 ð36Þ

MacCormack’s predictor–corrector scheme was used to solve
this set of equations, which can be written in vector form as [5]:

oE
ot
þ ½B� oF

og
þ S ¼ 0 ð37Þ

where

E ¼
T

q

� �

F ¼
q

T

� �

S ¼
0
qs�1

� �

B ¼

pg
p�1

p½ �
qce � p

e � de
dt

� pg
e � de

dt
pjg

p�1
p½ �

e

2
66664

3
77775

The resulting finite difference equations for the liquid region are
then as follows [5,29]

Step 1:

~Enþ1
i ¼ En

i � m½Bn
i �½F

n
iþ1 � Fn

i � � DgSn
i ð38Þ

Step 2:

Enþ1
i ¼ 1

2
fEn

i þ ~Enþ1
i � m½~Bnþ1

i �½~Fnþ1
i � ~Fnþ1

i�1 � � Dg~Snþ1
i g ð39Þ

Finally, as discussed earlier, on the solid side of the interface we
simplified the interface condition to a boundary condition, by cal-
culating the spatial temperature gradient via a harmonic mean, as
suggested by Patankar [27]
dT
dx
jþ ¼ T i � Tsub

b�e
jS
þ 1

h

ð40Þ

Tsub is the substrate temperature and jS is the thermal conductivity
of the solidified material. .

3. Results and discussion

The material properties used in the simulations are given in Ta-
ble 1. An Al splat of thickness b solidifies on a substrate, as shown
in Fig. 2. Wang [30] presented solutions of the PE for this problem;
here we present the PE, CHE and MHE, and compare results of the
three.

In general, the heat transfer coefficient h in splat cooling ranges
from 105 to 107 W m�2 K�1 [30]. As we are interested in studying
the non-equilibrium effects of rapid solidification, we chose to ap-
ply h = 1.0 � 107 W m�2 K�1 in order to increase the interface
velocity, which in turn magnifies the effects of non-equilibrium
solidification.

To begin, the results of a mesh independence calculation are
shown in Fig. 3, for the case of s = 0 s (parabolic heat conduction),
DTi = 10 K, b = 5.0 � 10�5 m, and lk = 0.05 m(s K)�1 [30]. Note that
this splat is much thicker than is usually encountered in a thermal
spray coating. To assess mesh independence, we compared three
mesh densities: fine (M = 1000 nodes, D = 5.0 � 10�8 m), medium
(M = 500 nodes, D = 1.0 � 10�7 m), and coarse (M = 250 nodes,
D = 2.0 � 10�7 m). Fig. 3 clearly shows that the three sets of results
are nearly identical, as the interface velocity rises from 0.5 ms�1 to
2.5 ms�1 within 0.11 ls. For the same results, interface tempera-
ture versus interface location is illustrated in Fig. 4, which shows
that the interface temperature drops from 923 to 885 K within
0.11 ls.



Fig. 5. Interface velocity vs. interface location for the PE, CHE, and MHE equations,
calculated on various meshes. Tm = 933 K, Tn = 923 K, h = 1.0 � 107 W m�2 K�1,
lk = 0.05 m(s K)�1.

Fig. 6. Interface velocity vs. interface location for various s. Tm = 933 K, Tn = 923 K,
h = 1.0 � 107 W m�2 K�1, lk = 0.05 m(s K)�1.

Fig. 3. Interface velocity vs. interface location based on the PE, calculated on
various meshes. Tm = 933 K, Tn = 923 K, h = 1.0 � 107 W m�2 K�1, s = 0 s,
lk = 0.05 m(s K)�1.
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Mesh independence was then assessed for the PE, CHE and
MHE, using the same three meshes; interface velocity versus inter-
face location is presented in Fig. 5 for s = 1.0 � 10�10 s. Again, the
curves match well, and there is negligible difference between the
hyperbolic results and those of the PE solution (s = 0 s, Fig. 4). From
this comparison we can conclude that: (1) the results of the PE, CHE
and MHE are mesh independent, and (2) at low interface velocity,
with a realistic value of the relaxation time (s = 1.0 � 10�10 s), the
PE, CHE and MHE yield nearly identical solutions.

We now consider other values of s; Fig. 6 illustrates results for
s = 0 s, 10�8 s, 10�7 s and 2 � 10�7 s. Note first that the hyperbolic
models predict that the initial velocity decreases as relaxation time
increases; for s = 2 � 10�7 s, the initial velocity is almost zero. Yet
for s = 10�8 s, the interface velocity profiles differ little from those
of the PE. Clearly, when lk is small, the initial interface velocity is
also small; the results suggest that one can only obtain significant
deviations between the hyperbolic and parabolic models with very
large values of s (10�7 s). This is an unrealistic relaxation time for a
heat conduction problem. Therefore, for realistic relaxation times,
(10�10–10�12 s), when the interface velocity is very low (0.5 ms�1),
the hyperbolic and parabolic models yield the same answers for
pure metal solidification. Finally, note that the results of the CHE
and MHE are almost identical, even for large values of s.

Fig. 7 presents PE, CHE, and MHE results of the effect of varying
the heat transfer coefficient (h = 5.0 � 106 W m�2 K�1, 1.0 � 107

W m�2 K�1 and 5.0 � 107 W m�2 K�1), for a large relaxation time
Fig. 4. Interface temperature vs. interface location based on the PE, calculated on
various meshes. Tm = 933 K, Tn = 923 K, h = 1.0 � 107 W m�2 K�1, s = 0 s,
lk = 0.05 m(s K)�1.
(10�7 s). As can be seen, the minimum deviation between the par-
abolic and hyperbolic results is for h = 5.0 � 10�6 W m�2 K�1. With
a larger heat transfer coefficient, the interface velocity increases,
which magnifies differences between the hyperbolic and parabolic
models, especially at this large value of s. Note again that the re-
sults of the CHE and MHE are nearly identical.

As mentioned previously, s usually varies between 10�10–
10�12 s [9] for most heat conduction problems. In such a range,
the parabolic and hyperbolic models yield nearly identical results
for small Vi. But as interface velocity increases, the deviation in-
creases (Fig. 7), and thus it is worth examining the deviation for
relaxation times in the proper range (10�10–10�12 s), at high inter-
face velocities.

Recall that Eq. (23) relates Vi to lk and the local undercooling
DTi. The results of Figs. 3–7 correspond to low values of lk and
DTi; therefore, the interface velocities are very low (Vi begins at
0.5 ms�1). To more clearly illustrate how higher interface velocities
yield non-equilibrium behavior, a larger value of lk was used (lk

can be obtained from either of Eqs. (20) and (21), which yield val-
ues of lk that can vary by up to two orders of magnitude [28]). Set-
ting lk = 1.74 m(s K)�1 [28], together with a larger undercooling,
Eq. (23) yielded a much higher initial interface velocity for the par-
abolic model.

Fig. 8 illustrates results for this case. Note first that there are
two curves for s = 0 s (PE model): when DT = 100 K and h = 1.0 �
10�6 W m�2 K�1, the interface velocity begins at 100 ms�1, but



Fig. 7. Interface velocity vs. interface location as a function of the heat transfer
coefficient h. Tm = 933 K, Tn = 923 K, lk = 0.05 m(s K)�1.
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quickly drops to 6 ms�1; when DT = 0 K, the interface velocity in-
creases from 0 to 6 ms�1. Clearly, for the parabolic model, the ini-
tial interface velocity is determined by DT and lk; as solidification
proceeds, the value of Vi asymptotes to a single value; these results
are very similar to those of Wang [30]. The other curves in Fig. 8
show hyperbolic results, which all lie between the two curves of
the PE model. The velocities in these cases are initially small, less
than that of the parabolic model with same undercooling, then in-
crease dramatically, before approaching the values of the parabolic
model. A comparison of these curves also shows that at the begin-
ning of solidification, as s increases, the velocity decreases,
although with time, the curves asymptote to the same value. At
the beginning of solidification, when s decreases, the hyperbolic
results are much to the curve of the PE model with the same und-
ercooling. The figure also shows that values of s > 10�10 s can con-
tribute to non-equilibrium behaviors of solidification, and that
these are more obvious at higher interface velocities
(20 � 100 ms�1). Again, the results of the CHE and MHE are nearly
identical.
Fig. 8. Interface velocity vs. interface location. Tm = 933 K, Tn = 833 K or Tn = 933 K,
h = 1.0 � 107 W m�2 K�1, lk = 1.74 m(s K)�1.
Fig. 9 is the same as Fig. 8, but with interface position plotted on
a logarithmic rather than a linear scale. Fig. 9 clearly shows the dif-
ferent initial solidification velocities predicted by the hyperbolic
and parabolic models. The non-equilibrium phase change of a pure
metal is significant only at the very beginning of solidification; as it
progresses it converges to the equilibrium result. For most realistic
scenarios, since the duration of non-equilibrium effects is very
short, such effects can be safely ignored when modeling pure metal
solidification. In Fig. 10, the solidification front location is pre-
sented versus time, and shows that as s increases, solidification
slows, but again, since the duration is very short (�0.01 ls), such
effects are negligible.

Finally, the results of the CHE model of a thinner splat
(b = 1.0� 10�5 m, lk = 1.74 m(s K)�1, s = 0,1.0� 10�10, 5.0� 10�10 s)
are shown in Fig. 11. The splat thickness in this case is more repre-
sentative of that found in a thermal spray coating. The results show
that at the initial stage of solidification, the splat thickness does af-
fect the results. Comparing Fig. 8 (b = 5.0 � 10�5 m) and Fig. 10
(b = 1.0 � 10�5 m), one can see that the interface velocity is higher
for the thinner splat. For example, when s = 1.0 � 10�10, the peak
velocity for the thinner splat is around 80 ms�1, while the value
for the thinner splat is 70 ms�1. But as Vi approaches the equilib-
rium velocity, the difference between the two cases diminishes.

4. Conclusions and future work

A 1D interface tracking method has been developed to simu-
late rapid solidification, based on the PE, CHE and MHE equa-
tions. The model takes into account undercooling and non-
equilibrium heat flux at the interface. The equations were solved
via MacCormack’s predictor-corrector method, by transforming
the physical coordinate to one that fixes the moving solid/liquid
interface.

The numerical results help to understand the non-equilibrium
heat wave generated by the hyperbolic equations. The simula-
tions predicted very high interface accelerations at the beginning
of solidification. Non-equilibrium effects are related to the relax-
ation time s relative to the interface velocity; these effects are
negligible for realistic values of s. We also investigated the role
of lk; results demonstrated that large values yielded high initial
Fig. 9. Same as Fig. 8, but with interface location plotted on a log scale.



Fig. 10. Solidification front location vs. time, for various s. Tm = 933 K, Tn = 833 K,
h = 3.0 � 107 W m�2 K�1, lk = 1.74 m(s K)�1.

Fig. 11. Interface velocity vs. interface location, varying s. Tm = 933 K, Tn = 833 K,
h = 1.0 � 107 W m�2 K�1, lk = 1.74 m(s K)�1.
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interface velocities, which in turn magnify non-equilibrium
behavior. Finally, the results show that the CHE and MHE yield
nearly identical results.

The work presented here was for rapid solidification of a
pure metal. Our future work includes the development of a
model for the rapid solidification of an alloy. To compare equi-
librium and non-equilibrium binary solidification, a relaxation
time term related to the solute diffusion speed will be added
to the classical diffusion equations, transforming them from
parabolic to hyperbolic. The model will be used to solve the
coupled thermal and concentration hyperbolic equations numer-
ically via an iterative interface tracking method built on the one
presented here.
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